
HUA’S LEMMA AND EXPONENTIAL

SUMS OVER BINARY FORMS

Trevor D. Wooley∗

Abstract. We establish mean value estimates for exponential sums over binary
forms of strength comparable with the bounds attainable via classical, single variable

estimates for diagonal forms. These new mean value estimates strengthen earlier

bounds of the author when the degree d of the form satisfies 5 6 d 6 10, the
improvements stemming from a basic lemma which provides uniform estimates for the

number of integral points on affine plane curves in mean square. Exploited by means
of the Hardy-Littlewood method, these estimates permit one to establish asymptotic

formulae for the number of integral zeros of equations defined as sums of binary forms

of the same degree d, provided that the number of variables exceeds 17
16

2d, improving
significantly on what is attainable either by classical additive methods, or indeed the

general methods of Birch and Schmidt.

1. Introduction. Rather general versions of the Hardy-Littlewood method due
to Birch [2] and Schmidt [13] offer remarkably successful approaches to estimating
the number of integral zeros of prescribed height satisfying a given homogeneous
polynomial with integral coefficients. Both approaches require the polynomial un-
der investigation to possess many variables in terms of its degree, and there are
further hypotheses to be negotiated involving, directly or indirectly, the singular
locus of the associated hypersurface. These unfortunate deficiencies of the method
are significantly less pronounced when the polynomial under investigation is diago-
nal, which is to say, of the shape a1x

d
1 + · · ·+asx

d
s (see Chapter 9 of Vaughan [19]),

and such is also the case when the polynomial diagonalises over C (see Birch and
Davenport [3]). The availability of superior analytic methods for the diagonal sit-
uation motivates investigation of polynomials intermediate in complexity between
the diagonal ones, and the quite general homogeneous polynomials investigated by
Birch and Schmidt, the hope being that insight will be obtained relevant to the
general situation. One such intermediate situation is that in which the polynomial
splits as a sum of binary homogeneous polynomials, and such has been investigated
with some success for cubic forms by Chowla and Davenport [7], and more recently
by Brüdern and Wooley [6]. The author [22] has rather recently obtained analogues
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of Weyl’s inequality and Hua’s lemma for exponential sums over binary forms of
higher degree, and thereby has made progress on problems involving sums of bi-
nary forms of arbitrary degree. This work was hindered by our lack of good uniform
estimates for the number of integral points on affine plane curves. The object of
this paper is to sharpen our earlier conclusions, and this we achieve by developing
useful mean square estimates for the number of integral points on certain families
of affine plane curves. It is to be hoped that progress will be stimulated in problems
involving higher degree forms in many variables.

Before proceeding to the main thrust of this paper, it seems worthwhile to recall
the conclusions stemming from the classical additive theory, and the work of Birch
and Schmidt, so far as the density of integer points on hypersurfaces is concerned.
First, on combining estimates of Weyl and Hua, one obtains the following classical
conclusion (see Chapter 9 of Vaughan [19]).

Theorem A (Classical). Let a1, . . . , as ∈ Z \ {0} and write

F (x) = a1x
d
1 + · · ·+ asx

d
s .

Then whenever s > 2d, one has

card({x ∈ [−B,B]s ∩ Zs : F (x) = 0}) ∼ CBs−d,

where C denotes the “product of local densities” within the box [−B,B]s.

In order to save space at this point, we avoid explaining what is meant by the term
“product of local densities”, and instead note merely that this number is positive
and uniformly bounded away from zero whenever the equation F (x) = 0 possesses
non-singular real and p-adic solutions for every prime p. We refer the reader to
Vaughan [17], [18], Heath-Brown [10] and Boklan [4] for the theory underlying the
latest developments concerning the asymptotic formula in the diagonal situation.
In order to describe Birch’s theorem (see [2]), we recall that the singular locus of
the hypersurface defined by the homogeneous equation F (x1, . . . , xs) = 0 is the set
of points y ∈ Cs satisfying the equations

∂F

∂x1
(y) = · · · = ∂F

∂xs
(y) = 0.

Theorem B (Birch). Let F (x) ∈ Z[x1, . . . , xs] be homogeneous of degree d, and
suppose that the variety defined by the equation F (x) = 0 has a singular locus of
dimension at most D. Then whenever s−D > (d− 1)2d, one has

card({x ∈ [−B,B]s ∩ Zs : F (x) = 0}) ∼ CBs−d,

where C denotes the “product of local densities” within the box [−B,B]s.

Mention of the singular locus is removed by Schmidt [13] at the cost of introducing
an invariant h associated with the polynomial under consideration. When F (x) ∈
Q[x1, . . . , xs] is a form of degree d > 1, write h(F ) for the least number h such that
F may be written in the form

F = A1B1 +A2B2 + · · ·+AhBh,

with Ai, Bi forms in Q[x] of positive degree for 1 6 i 6 h.
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Theorem C (Schmidt). Let d be an integer exceeding 1, and write χ(d) =
d224dd!. Let F (x) ∈ Z[x1, . . . , xs] be homogeneous of degree d, and suppose that
h(F ) > χ(d). Then one has

card({x ∈ [−B,B]s ∩ Zs : F (x) = 0}) ∼ CBs−d,

where C denotes the “product of local densities” within the box [−B,B]s.

We reiterate that the relative simplicity and strength of Theorem A over Theorems
B and C seems to us to justify the investment of further effort in investigations which
carry successful elements of the classical methods over to more general situations.
We are now at liberty to focus on the topics central to this paper.

Over sixty years ago, Hua [11] greatly simplified the analysis of the asymptotic
formula in Waring’s problem and allied additive problems with the introduction
of a new mean value estimate which, to this day, remains central to the theory
of exponential sums of small degree in a single variable. Roughly speaking, Hua
observed that by Weyl differencing half of the exponential sums in a suitable mean
value, and interpreting the result in terms of the underlying diophantine equation,
one obtains a recursive estimate for successive mean values in terms of divisor sum
estimates of particularly simple type. The author has recently obtained a version
of Hua’s lemma for exponential sums of the type∑

06x,y6P

e(αΦ(x, y)),

in which Φ(x, y) is a non-degenerate binary form with integral coefficients, and as
usual, we write e(z) to denote e2πiz (see [22]). By means of a carefully orchestrated
differencing procedure, we are able to engineer a recursion similar to that of Hua in
the situation of a single variable. Unfortunately, however, the divisor sum estimates
are complicated by the presence of estimates for the number of integral points on
affine plane curves, and our relative ignorance of such matters somewhat weakens
the ensuing mean value estimates. In this paper we sharpen our analogue of Hua’s
lemma by means of an enhanced treatment of the affine curves that arise from the
differencing process at the heart of our treatment.

In order to describe our version of Hua’s lemma, we require some notation.
Suppose that Φ(x, y) ∈ Z[x, y] is a binary form of degree d exceeding 1. Then we
say that Φ is degenerate if there exist complex numbers α and β such that Φ(x, y) is
identically equal to (αx+βy)d. It is easily verified that when Φ(x, y) is degenerate,
then there exist integers a, b and c with Φ(x, y) = a(bx+ cy)d. Finally, define the
exponential sum

fΦ(α;P ) =
∑

06x,y6P

e(αΦ(x, y)). (1.1)

Theorem 1. Suppose that Φ(x, y) ∈ Z[x, y] is a non-degenerate form of degree
d > 3. Then the following estimates hold.
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(i) When d = 3 or 4 and j is an integer with 1 6 j 6 d, or when d > 5 and j = 1
or 2, one has for each positive number ε the bound∫ 1

0

|fΦ(α;P )|2
j−1

dα� P 2j−j+ε.

(ii) When d = 5, one has for each positive number ε the bounds∫ 1

0

|fΦ(α;P )|4dα� P 21/4+ε,

∫ 1

0

|fΦ(α;P )|8dα� P 49/4+ε,∫ 1

0

|fΦ(α;P )|10dα� P 127/8+ε,

∫ 1

0

|fΦ(α;P )|17dα� P 29+ε.

(iii) When 6 6 d 6 10 and j is an integer with 3 6 j 6 d− 2, then for each positive
number ε one has ∫ 1

0

|fΦ(α;P )|2
j−1

dα� P 2j−j+1/(d−j+2)+ε.

Also, when 6 6 d 6 10, one has for each ε > 0 the bounds∫ 1

0

|fΦ(α;P )| 9
32 2d

dα� P
9
16 2d−d+1+ε

and ∫ 1

0

|fΦ(α;P )| 1732 2d

dα� P
17
16 2d−d+ε.

Of course, bounds for moments of fΦ(α;P ) intermediate between those recorded
in the statement of Theorem 1 may be obtained by applying Hölder’s inequality to
interpolate between those above. For comparison, Theorem 2 of Wooley [22] shows
that when d > 5 and j is an integer with 1 6 j 6 d− 1, one has∫ 1

0

|fΦ(α;P )|2
j−1

dα� P 2j−j+ 1
2+ε,

and also provides the estimates∫ 1

0

|fΦ(α;P )| 5
16 2d

dα� P
5
8 2d−d+1+ε and

∫ 1

0

|fΦ(α;P )| 9
16 2d

dα� P
9
8 2d−d+ε.

Case (iii) of Theorem 1 above plainly provides estimates superior to the latter
bounds. On the other hand, case (i) of Theorem 1 is simply a restatement of the
first estimate of [22, Theorem 2]. We note also that when d is greater than or equal
to 11, it is possible to apply a trivial variant of Vinogradov’s methods in order
to obtain conclusions superior to those stemming from Theorem 1 (see [22, §8] for
details). Since we are interested primarily in ideas likely to generalise successfully to
homogeneous forms in many variables, we discuss Vinogradov’s methods no further
herein.

There are immediate consequences of the estimates recorded in Theorem 1 for
the solubility of homogeneous diophantine equations which split as sums of binary
forms. We confine ourselves here to a routine conclusion discussed in detail in [22].
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Theorem 2. Let d be an integer with 3 6 d 6 10, and define s0(d) by

s0(d) =
{

2d−1, when d = 3, 4,
17
322d, when 5 6 d 6 10.

Let s > s0(d), and let Φj ∈ Z[x, y] (1 6 j 6 s) be homogeneous forms of degree d
with non-zero discriminants. Let N (B) = Ns(B;Φ) denote the number of solutions
of the diophantine equation

Φ1(x1, y1) + · · ·+ Φs(xs, ys) = 0, (1.2)

subject to |xj | 6 B and |yj | 6 B (1 6 j 6 s). Then provided that the form
Φ1(x1, y1) + · · ·+ Φs(xs, ys) is indefinite, one has

Ns(B;Φ) = CSB2s−d +OΦ(B2s−d−δ),

for some positive number δ. Here, C denotes the volume of the (2s−1)-dimensional
hypersurface determined by the equation (1.2) contained in the box [−1, 1]2s. Also,
S denotes the singular series

∏
p vp, where the product is over prime numbers,

vp = lim
h→∞

ph(1−2s)Ms(ph;Φ),

and Ms(ph;Φ) denotes the number of solutions of the congruence

Φ1(x1, y1) + · · ·+ Φs(xs, ys) ≡ 0 (mod ph),

with 1 6 xj , yj 6 ph (1 6 j 6 s).

We note that the expression CS explicitly describes the “product of local den-
sities”, for the problem at hand, previously mentioned in Theorems A, B and C.
Given the existence of non-singular real and p-adic solutions of the equation (1.2),
the proof of Theorem 2 follows precisely the argument of the proof of [22, Theorem
3], and hence we omit details in the interest of saving space.

Following some preliminary reductions in §2, we grapple with basic estimates
for the number of integral points on affine plane curves in §3. We discuss the
main induction in §4, thereby establishing the majority of the estimates recorded
in Theorem 1. The closing stages of the induction have a different flavour, and this
we defer to §5, completing the proof of Theorem 1.

Throughout this paper, implicit constants occurring in Vinogradov’s notation
� and � will depend at most on the coefficients of the implicit binary forms, a
small positive number ε, exponents d and k, and quantities occurring as subscripts
to the latter notations, unless otherwise indicated. We write f � g when f � g
and g � f . When x is a real number, we write [x] for the greatest integer not
exceeding x. Also, we use vector notation for brevity. Thus, for example, the s-
tuple (Φ1, . . . ,Φs) will be abbreviated simply to Φ. In an effort to simplify our
exposition, we adopt the convention that whenever ε appears in a statement, we
are implicitly asserting that the statement holds for each ε > 0. Note that the
“value” of ε may consequently change from statement to statement.

The author is grateful to the referee for useful comments.
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2. Preliminary reductions. Let k be an integer with k > 3 and let Φ(x, y) ∈
Z[x, y] be a non-degenerate homogeneous polynomial of degree k. Let P be a large
real number, and define the exponential sum f(α) = fΦ(α;P ) as in (1.1). We
aim initially to transform f(α) into an associated exponential sum amenable to
our differencing procedure, and the latter goal we achieve by following closely the
argument of [22, §2].

When Φ(x, y) ∈ Z[x, y], we describe the polynomial Ψ as being a condensation
of Φ when the following condition (C) is satisfied.

(C) We have Ψ(u, v) ∈ Z[u, v], and the coefficients of Ψ depend at most on those
of Φ. Further, the polynomial Ψ(u, v) has the same degree as Φ(x, y), and
takes the shape

Ψ(u, v) = Auk +Buk−tvt +
k∑

j=t+1

Cju
k−jvj , (2.1)

with AB 6= 0 and 2 6 t 6 k.

Lemma 2.1. There is a condensation Ψ of Φ, and a positive real number X with
X � P , with the property that for every natural number s one has

∫ 1

0

|fΦ(α;P )|2sdα�
∫ 1

0

|HΨ(α;X)|2sdα,

where we write
HΨ(θ;X) =

∑
|u|6X

∑
|v|6X

e(θΨ(u, v)). (2.2)

Proof. This is [22, Lemma 2.3].

The work of [22, §5] takes care of certain special cases that arise in our treat-
ment. We summarise the relevant conclusions of this discussion in the following
two lemmata.

Lemma 2.2. Suppose that k = 3 or 4 and j is an integer with 1 6 j 6 k, or else
that k > 5 and j = 1 or 2. Then for each positive number ε, one has

∫ 1

0

|fΦ(α;P )|2
j−1

dα� P 2j−j+ε.

Proof. This estimate is recorded as the first conclusion of [22, Theorem 2].
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Lemma 2.3. Suppose that Ψ(u, v) ∈ Z[u, v] has the shape (2.1). Suppose also that
k > 5, that X is a large real number, and that HΨ(α;X) is defined as in (2.2).
Then for 1 6 j 6 k, and for each positive number ε, one has the upper bound∫ 1

0

|HΨ(α;X)|2
j−1

dα� X2j−j+ε,

provided either that t = k, or else that t = k − 1 and Ck = 0. When t = k − 1 and
Ck 6= 0, meanwhile, then there is a condensation Υ of Ψ with the property that Υ
has the shape

Υ(x, y) = A′xk +B′xk−2y2 +
k∑

j=3

C ′jx
k−jyj ,

with A′B′ 6= 0, and there is a positive real number Y with Y � X, and Υ and Y
satisfy the property that for each natural number s, one has∫ 1

0

|HΨ(α;X)|2sdα�
∫ 1

0

|HΥ(α;Y )|2sdα.

Proof. The situations in which t = k, or else t = k − 1 and Ck = 0, are dealt with,
respectively, in Lemmata 5.2 and 5.3 of [22]. The alternative situation in which
t = k − 1 and Ck 6= 0, on the other hand, is discussed in the preamble to Lemma
5.3 of [22].

Our deliberations are also greatly simplified through a manoeuvre that trans-
forms a polynomial of the shape (2.1) with t = k−2 into a corresponding polynomial
in which t = 2 or 3. We begin with an analogue of Lemma 5.3 of [22]. Suppose,
temporarily, that Ψ(u, v) has the shape (2.1) with t = k − 2, so that for some
integers a, b, c, d with ab 6= 0, one has

Ψ(x, y) = axk + bx2yk−2 + cxyk−1 + dyk. (2.3)

Lemma 2.4. Suppose that k > 4, and that Ψ(u, v) ∈ Z[u, v] has the shape (2.3)
with ab 6= 0 and d = 0. Define the exponential sum HΨ(α;X) as in (2.2). Then for
1 6 j 6 k, and for each positive number ε, one has the upper bound∫ 1

0

|HΨ(α;X)|2
j−1

dα� X2j−j+ε. (2.4)

Proof. Our argument is a variant of the proof of Lemma 5.3 of [22]. We abbreviate
HΨ(α;X) simply to H(α). Also, when 1 6 j 6 k, we write

Ij(X) =
∫ 1

0

|H(α)|2
j−1

dα. (2.5)
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The bound (2.4) is immediate from Lemma 2.2 when j = 1, 2. Suppose then that
j is an integer with 2 6 j 6 k − 1, and that the inequality (2.4) holds. We seek
to show that (2.4) holds with j replaced by j + 1, whence the desired conclusion
follows for 1 6 j 6 k by induction.

Observe first that

|H(α)| � X +
∑

16|x|6X

∣∣∣ ∑
|y|6X

e(α(axk + bx2yk−2 + cxyk−1))
∣∣∣.

Define the exponential sum hl(α) = hl(α;X) by

hl(α;X) =
∑
|y|6X

e(α(blyk−2 + cyk−1)).

Then it follows from (2.5) via Hölder’s inequality that

Ij+1(X) � X2j−1
Ij(X) +

∫ 1

0

(
|H(α)|

∑
16|x|6X

|hx(xα)|
)2j−1

dα

� X2j−1
Ij(X) +X2j−1−1N(X), (2.6)

where

N(X) =
∫ 1

0

|H(α)|2
j−1 ∑

16|x|6X

|hx(xα)|2
j−1

dα. (2.7)

In the special situation in which j = k − 1 and c = 0, we instead note that by
Cauchy’s inequality, one has∣∣∣ ∑

|y|6X

∑
16|x|6X

e(α(axk + bx2yk−2))
∣∣∣2

� X
∑
|y|6X

∣∣∣ ∑
16|x|6X

e(α(axk + bx2yk−2))
∣∣∣2

� X3 +X
∑

16|x1|,|x2|6X
x1 6=±x2

∣∣∣ ∑
|y|6X

e(αb(x2
1 − x2

2)y
k−2)

∣∣∣.
Thus, on applying Hölder’s inequality within (2.5), we now obtain

Ik(X) � X3·2k−3
Ik−1(X)

+X2k−3
∫ 1

0

|H(α)|2
k−2
( ∑

16|x1|,|x2|6X
x1 6=±x2

|hx2
1−x2

2
(α)|

)2k−3

dα

� X3·2k−3
Ik−1(X) +X3·2k−3−2M(X), (2.8)
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where

M(X) =
∫ 1

0

|H(α)|2
k−2 ∑

16|x1|,|x2|6X
x1 6=±x2

|hx2
1−x2

2
(α)|2

k−3
dα. (2.9)

By orthogonality, it follows from (2.7) that N(X) is equal to the number of
integral solutions of the equation

x
2j−2∑
i=1

(
bx(yk−2

i − zk−2
i ) + c(yk−1

i − zk−1
i )

)
=

2j−2∑
i=1

(Ψ(ui, vi)−Ψ(ti, wi)) , (2.10)

with 1 6 |x| 6 X, and with each of yi, zi, ui, vi, ti, wi (1 6 i 6 2j−2) bounded in
absolute value by X. Let N0(X) denote the number of such solutions of (2.10) in
which the right hand side of the equation is equal to zero, and let N1(X) denote
the corresponding number of solutions with the latter expression non-zero. Then
one has

N(X) = N0(X) +N1(X). (2.11)

We first estimate N0(X). On considering the underlying diophantine equations
and recalling (2.5), we have

N0(X) � Ij(X)
∑

16|x|6X

∫ 1

0

|hx(α)|2
j−1

dα.

But a classical version of Hua’s lemma (see Lemma 2.5 of Vaughan [19]) shows that
for 2 6 j 6 k − 1, one has∫ 1

0

|hx(α)|2
j−1

dα� X2j−1−j+1+ε,

uniformly in x 6= 0. Thus we deduce that for 2 6 j 6 k − 1, one has

N0(X) � X2j−1−j+2+εIj(X). (2.12)

In order to dispose of N1(X), we introduce some additional notation. For each
integer l, we denote by rj(n; l) the number of representations of the integer n in
the form

n = l
2j−2∑
i=1

(
bl(yk−2

i − zk−2
i ) + c(yk−1

i − zk−1
i )

)
,

with |yi| 6 X and |zi| 6 X (1 6 i 6 2j−2). Similarly, for each integer n we write
Rj(n) for the number of representations of n in the form

n =
2j−2∑
i=1

(Ψ(ui, vi)−Ψ(ti, wi)) ,
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with each of ui, vi, ti, wi (1 6 i 6 2j−2) bounded in absolute value by X. Then on
writing γ = (|b|+ |c|)2j , we find that

N1(X) 6
∑

16|n|6γXk

Rj(n)
∑
l|n

|l|6X

rj(n; l).

On applying an elementary estimate for the divisor function, we therefore deduce
from Cauchy’s inequality that

N1(X) 6
(∑

n∈Z
Rj(n)2

)1/2( ∑
16|n|6γXk

( ∑
l|n

|l|6X

rj(n; l)
)2)1/2

� Xε
(∑

n∈Z
Rj(n)2

)1/2(∑
n∈Z

∑
16|l|6X

rj(n; l)2
)1/2

. (2.13)

However, on considering the underlying diophantine equations, it is apparent from
(2.13) that

N1(X) � Xε (Ij+1(X))1/2
( ∑

16|l|6X

∫ 1

0

|hl(α)|2
j

dα
)1/2

.

But the classical version of Hua’s lemma (see Lemma 2.5 of [19]) shows that for
1 6 j 6 k − 2, one has ∫ 1

0

|hl(α)|2
j

dα� X2j−j+ε,

uniformly in l 6= 0. Moreover, the latter conclusion remains valid for j = k − 1
whenever c is non-zero. In either circumstance, we deduce that

N1(X) � Xε (Ij+1(X))1/2
( ∑

16|l|6X

X2j−j+ε
)1/2

. (2.14)

On combining (2.6), (2.11), (2.12) and (2.14), we find that for 2 6 j 6 k − 2,
and also when j = k − 1 and c 6= 0, one has

Ij+1(X) �
(
X2j−1

+X2j−j+1+ε
)
Ij(X) +X2j−(j+1)/2+ε (Ij+1(X))1/2

,

whence our inductive hypothesis (2.4) leads to the upper bound

Ij+1(X) � X2j+1−j−1+ε +X2j−(j+1)/2+ε(Ij+1(X))1/2.

Thus the estimate (2.4) follows with j+1 in place of j in the current circumstances,
and so the conclusion of the lemma has been established in all cases but that in
which c = 0 and j = k − 1.
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We now turn to the final elusive case wherein c = 0 and j = k − 1. By orthogo-
nality, it follows from (2.9) that M(X) is equal to the number of integral solutions
of the equation

b(x2
1 − x2

2)
2k−4∑
i=1

(yk−2
i − zk−2

i ) =
2k−3∑
i=1

(Ψ(ui, vi)−Ψ(ti, wi)), (2.15)

with 1 6 |x1|, |x2| 6 X and x1 6= ±x2, and with each of yi, zi (1 6 i 6 2k−4), and
ui, vi, ti, wi (1 6 i 6 2k−3) bounded in absolute value by X. Let M0(X) denote
the number of such solutions of (2.15) in which the right hand side of the equation
is equal to zero, and let M1(X) denote the corresponding number of solutions with
the latter expression non-zero. Then plainly one has

M(X) = M0(X) +M1(X). (2.16)

We first estimate M0(X). On considering the underlying diophantine equations
and recalling (2.5), we have

M0(X) � Ik−1(X)
∑

16l,m62X

∫ 1

0

|hlm(α)|2
k−3

dα.

But a classical version of Hua’s lemma shows that∫ 1

0

|hlm(α)|2
k−3

dα� X2k−3−k+3+ε,

uniformly in lm 6= 0, whence we obtain

M0(X) � X2k−3−k+5+εIk−1(X). (2.17)

Meanwhile, recycling the notation introduced to treat N1(X), we see that

M1(X) 6
∑

16|n|6γXk

Rk−1(n)
∑
l|n

|l|62X

∑
m|n

|m|62X

T (n; lm),

where we write T (n;λ) for the number of representations of the integer n in the
form

n = bλ
2k−4∑
i=1

(yk−2
i − zk−2

i ),

with |yi| 6 X and |zi| 6 X (1 6 i 6 2k−4). Again applying an elementary estimate
for the divisor function, we deduce from Cauchy’s inequality that

M1(X) 6
(∑

n∈Z
Rk−1(n)2

)1/2( ∑
16|n|6γXk

( ∑
l|n

|l|62X

∑
m|n

|m|62X

T (n; lm)
)2)1/2

� Xε
(∑

n∈Z
Rk−1(n)2

)1/2(∑
n∈Z

∑
16|l|62X

∑
16|m|62X

T (n; lm)2
)1/2

.
(2.18)
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On considering the underlying diophantine equations, we find from (2.18) that

M1(X) � Xε(Ik(X))1/2
( ∑

16|l|62X

∑
16|m|62X

∫ 1

0

|hlm(α)|2
k−2

dα
)1/2

.

Again applying the classical version of Hua’s lemma, one has∫ 1

0

|hlm(α)|2
k−2

dα� X2k−2−k+2+ε,

uniformly in lm 6= 0, whence

M1(X) � Xε(Ik(X))1/2
( ∑

16|l|62X

∑
16|m|62X

X2k−2−k+2+ε
)1/2

. (2.19)

On combining (2.8), (2.16), (2.17) and (2.19), we find that when c = 0, one has

Ik(X) �
(
X3·2k−3

+X2k−1−k+3+ε
)
Ik−1(X) +X2k−1−k/2+ε(Ik(X))1/2,

whence our inductive hypothesis (2.4) with j = k − 1 leads to the upper bound

Ik(X) � X2k−k+ε +X2k−1−k/2+ε(Ik(X))1/2.

We therefore conclude that (2.4) holds with j = k even when c = 0, and this
completes the proof of the lemma.

Lemma 2.5. Suppose that k > 4, and that Ψ(u, v) ∈ Z[u, v] has the shape (2.3)
with abd 6= 0. Define the exponential sum HΨ(α;X) as in (2.2). Then there is a
condensation Υ of Ψ with the property that Υ has the shape

Υ(x, y) = A′xk +B′xk−tyt +
k∑

j=t+1

C ′jx
k−jyj , (2.20)

with A′B′ 6= 0 and 2 6 t 6 3, and there is a positive real number Y with Y � X,
and Υ and Y satisfy the property that for each natural number s, one has∫ 1

0

|HΨ(α;X)|2sdα�
∫ 1

0

|HΥ(α;Y )|2sdα. (2.21)

Proof. By hypothesis, the coefficient d is non-zero, and thus we may make the
non-singular change of variable u = kdy + cx, v = x. Write

Υ(u, v) = Ψ(kdv, u− cv), (2.22)
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so that one has Υ(u, v) = (kd)kΨ(x, y). Then it follows from the argument of the
proof of Lemma 2.3 of [22] that for some positive real number Y with Y � X, and
for every natural number s, one has the upper bound (2.21). The proof of the lemma
will therefore be completed on establishing that the polynomial Υ(x, y), defined in
(2.22), has the shape (2.20). In order to establish the latter conclusion, we apply
Taylor’s theorem to determine whether or not various coefficients of Υ(u, v) vanish.

Write ∂z for the differential operator ∂/∂z. Then the coefficient of uk in Υ(u, v)
is equal to

1
k!
∂k

uΨ(kdv, u− cv)
∣∣∣
(u,v)=(0,0)

.

On writing Ψi,j for

∂i
x∂

j
yΨ(x, y)

∣∣∣
(x,y)=(0,0)

,

one finds by the chain rule, therefore, that the coefficient of uk in Υ(u, v) is equal
to

1
k!

Ψ0,k = d, (2.23)

and this is non-zero by hypothesis. Similarly, the coefficient of uk−1v in Υ(u, v) is
equal to

1
(k − 1)!

∂k−1
u ∂vΨ(kdv, u− cv)

∣∣∣
(u,v)=(0,0)

=
1

(k − 1)!
(kdΨ1,k−1 − cΨ0,k)

= kdc− ckd = 0. (2.24)

Next, the coefficient of uk−2v2 in Υ(u, v) is equal to

1
2!(k − 2)!

∂k−2
u ∂2

vΨ(kdv, u− cv)
∣∣∣
(u,v)=(0,0)

=
1

2!(k − 2)!
(
(kd)2Ψ2,k−2 − 2kdcΨ1,k−1 + c2Ψ0,k

)
= bk2d2 − 1

2k(k − 1)dc2. (2.25)

Finally, the coefficient of uk−3v3 in Υ(u, v) is equal to

1
3!(k − 3)!

∂k−3
u ∂3

vΨ(kdv, u− cv)
∣∣∣
(u,v)=(0,0)

=
1

3!(k − 3)!
(
(kd)3Ψ3,k−3 − 3(kd)2cΨ2,k−2 + 3kdc2Ψ1,k−1 − c3Ψ0,k

)
= −bk2(k − 2)d2c+ 1

3k(k − 1)(k − 2)dc3. (2.26)

When c = 0, one finds from (2.25) that the coefficient of uk−2v2 is bk2d2, and
this is non-zero by hypothesis. When c 6= 0, on the other hand, it follows from
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(2.25) and (2.26) that when the coefficients of both uk−2v2 and uk−3v3 are zero,
then necessarily

2kbd = (k − 1)c2 and 3kbd = (k − 1)c2,

whence bd = c = 0, contrary to hypothesis. We therefore conclude from equations
(2.23)–(2.26) that Υ(x, y) does indeed take the shape (2.20), wherein A′B′ 6= 0 and
t = 2 or 3. This completes the proof of the lemma.

We next recall the Weyl differencing lemma. Let ∆j denote the jth iterate of
the forward differencing operator, so that for any function Ω of a real variable α,
one has

∆1(Ω(α);β) = Ω(α+ β)− Ω(α),

and when j is a natural number,

∆j+1(Ω(α);β1, . . . , βj+1) = ∆1(∆j(Ω(α);β1, . . . , βj);βj+1).

We adopt the convention that ∆0(Ω(α);β) = Ω(α).

Lemma 2.6. Let X be a positive real number, and let Ω(x) be an arbitrary arith-
metical function. Write

T (Ω) =
∑
|x|6X

e(Ω(x)).

Then for each natural number j there exist intervals Ii = Ii(h) (1 6 i 6 j), possibly
empty, satisfying

I1(h1) ⊆ [−X,X] and Ii(h1, . . . , hi) ⊆ Ii−1(h1, . . . , hi−1) (2 6 i 6 j),

with the property that

|T (Ω)|2
j

6 (4X + 1)2
j−j−1

∑
|h1|62X

· · ·
∑

|hj |62X

Tj ,

and here we write
Tj =

∑
x∈Ij∩Z

e(∆j(Ω(x);h1, . . . , hj)).

Proof. This trivial variant of Lemma 2.3 of Vaughan [19] is recorded as Lemma 3.2
of [22].

We must also make use of a two dimensional forward differencing operator ∆i,j

defined as follows. When Ω(x, y) is a function of the real variables x and y, one
defines

∆1,0(Ω(x, y);β) = Ω(x+ β, y)− Ω(x, y)

and
∆0,1(Ω(x, y); γ) = Ω(x, y + γ)− Ω(x, y).
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When i and j are non-negative integers, one then defines

∆i,j(Ω(x, y);β1, . . . , βi; γ1, . . . , γj)

by taking ∆0,0(Ω(x, y);β;γ) = Ω(x, y), and in general by means of the relations

∆i+1,j(Ω(x, y);β1, . . ., βi+1; γ1, . . . , γj)

= ∆1,0(∆i,j(Ω(x, y);β1, . . . , βi; γ1, . . . , γj);βi+1)

and

∆i,j+1(Ω(x, y);β1, . . ., βi; γ1, . . . , γj+1)

= ∆0,1(∆i,j(Ω(x, y);β1, . . . , βi; γ1, . . . , γj); γj+1).

3. Integral points on affine plane curves. Essential to the main body of our
argument are estimates for the number of integral points on affine plane curves,
and in this section we record the estimates required for later use. Our basic tool is
the following result of Bombieri and Pila [5].

Lemma 3.1. Let C be the curve defined by the equation F (x, y) = 0, where
F (x, y) ∈ R[x, y] is an absolutely irreducible polynomial of degree d > 2. Also,
let N > exp(d6). Then the number of integral points on C, and inside a square
[0, N ]× [0, N ], does not exceed

N1/d exp(12(d logN log logN)1/2).

Proof. This is Theorem 5 of Bombieri and Pila [5]. We note that slightly sharper
estimates are now available through work of Pila [12], though these new estimates
have no impact on the present work.

At the request of the referee, we point out that applications of this result of
Bombieri and Pila (of a rather different flavour, involving slicing arguments) may
be found in [1], [14], [15] and [16]. An application more akin to that at hand may
be examined in §3 of [21] (the argument therein was in fact inspired by the proof
of Lemma 3.2 below). We avoid detailed discussion of the absolute irreducibility
condition occurring in the above lemma by careful averaging. Here the initial stages
of our argument are modelled closely on the method of the proof of [22, Lemma
4.2].

Lemma 3.2. Let X denote a large real number. Suppose that F (x, y) ∈ Z[x, y]
is a non-degenerate polynomial of degree d > 2, and that X is sufficiently large in
terms of d. Suppose also that for some fixed positive number A, one has that the
coefficients of F are each bounded in absolute value by XA. Given a polynomial
T (x, y) ∈ R[x, y], denote by rT (n;X) the number of solutions of the diophantine
equation T (x, y) = n, with (x, y) ∈ [−X,X]2 ∩ Z2. Then one of the following two
situations must occur, and in each of the bounds which follows, implicit constants
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depend at most on d, ε and A, and otherwise are independent of the coefficients of
F .

(i) There exist polynomials G(x, y) ∈ Z[x, y] and g(t) ∈ Q[t] satisfying the following
conditions.

(a) G is non-degenerate of degree exceeding 1;
(b) g has degree exceeding 1;
(c) the equation F (x, y) = g(G(x, y)) is satisfied identically;
(d) one has ∑

n∈Z
rF (n;X)2 � X2+1/d+ε +Xε

∑
n∈Z

rG(n;X)2.

(ii) No polynomials G, g exist satisfying the conditions (a), (b), (c), (d) above. Then
one has ∑

n∈Z
rF (n;X)2 � X2+1/d+ε.

Proof. Consider an integer n ∈ N with rF (n;X) 6= 0. In view of the hypotheses of
the statement of the lemma, we may suppose that for some fixed positive number
B, one has |n| 6 XB . When i is a non-negative integer, write

Zi = {n ∈ Z : |n| 6 2iXB}.

Also, let N1 denote the set of integers n ∈ Z0 for which the polynomial F (x, y)−n
is absolutely irreducible. Then an application of Lemma 3.1 reveals that for each
n ∈ N1, one has rF (n;X) = O(X1/d+ε), whence∑

n∈N1

rF (n;X)2 � X1/d+ε
∑

n∈Z0

rF (n;X) � X2+1/d+ε. (3.1)

Suppose next that n /∈ N1, so that the polynomial F (x, y) − n factors as a
product of absolutely irreducible factors, say

F (x, y)− n =
l∏

j=1

gj(x, y)
m∏

k=1

hk(x, y),

where l +m > 2, and where gj(x, y) ∈ R[x, y] (1 6 j 6 l), and

hk(x, y) = uk(x, y) + vk(x, y)
√
−1 (1 6 k 6 m),

with uk, vk ∈ R[x, y] for each k. Since hk(x, y) is presumed to be absolutely ir-
reducible, we may suppose that uk(x, y) and vk(x, y) have no non-trivial polyno-
mial common divisor over C[x, y]. It therefore follows from Bezout’s theorem that
the number of solutions of the simultaneous equations uk(x, y) = vk(x, y) = 0 is
bounded above by d2. By considering real and imaginary components, therefore,
the number of integral solutions of the equation hk(x, y) = 0 is also bounded above
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by d2. Next, if gj(x, y) is not some constant multiple of a Q-rational polynomial,
then since gj(x, y) is necessarily a constant multiple of a polynomial with alge-
braic coefficients, we deduce that the number of integral solutions of the equation
gj(x, y) = 0 is at most d2. For we may remove the aforementioned constant factor
and consider components with respect to some basis for the field extension contain-
ing the coefficients of gj(x, y). Then since gj(x, y) is not a constant multiple of a
Q-rational polynomial, we find that the integral zeros of gj(x, y) = 0 necessarily
satisfy at least two linearly independent Q-rational polynomial equations of degree
at most d, whence the desired conclusion follows as in the complex case. Let N2

denote the set of integers n ∈ Z0\N1 for which the polynomial F (x, y)−n possesses
no non-trivial, absolutely irreducible Q-rational polynomial factor. Then the above
argument shows that for each n ∈ N2, one has rF (n;X) = O(1), whence∑

n∈N2

rF (n;X)2 �
∑

n∈Z0

rF (n;X) � X2. (3.2)

Suppose next that the set Z0 \ (N1 ∪ N2) is non-empty, so that there exists
some integer n0 ∈ Z0 with the property that F (x, y) − n0 possesses a non-trivial,
absolutely irreducible Q-rational polynomial factor. Since F (x, y) has integer coef-
ficients, it follows that F (x, y)− n0 may be written as a product

F (x, y)− n0 = ψ1(x, y) . . . ψm(x, y), (3.3)

with each ψi(x, y) ∈ Z[x, y] irreducible of degree di, say. Moreover, we may suppose
without loss of generality that m > 2 and that d1 + · · ·+ dm = d. Furthermore, on
writing

R(u;φ;X) = R(u1, . . . , um;φ1, . . . , φm;X)

for the number of integer solutions of the system of equations

φi(x, y) = ui (1 6 i 6 m), (3.4)

with |x|, |y| 6 X, it follows from (3.3) that when Z0 \ (N1 ∪N2) is non-empty, one
has ∑

n∈Z0\{n0}

rF (n;X)2 6
∑

n∈Z1\{0}

( ∑
u1...um=n

R(u;ψ;X)

)2

.

Notice here that on the right hand side of the last inequality, we are implicitly
applying a shift by −n0 to Z0, and then we note that this shifted set is contained
in Z1. Thus, on combining an application of Cauchy’s inequality with an elementary
estimate for the divisor function, we obtain∑

n∈Z0

rF (n;X)2 � rF (n0;X)2 +Xε
∑

n∈Z1\{0}

∑
u1...um=n

R(u;ψ;X)2

� X2 +Xε
∑

u∈Zm
1

R(u;ψ;X)2. (3.5)
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Suppose now that m > 2, and that for 1 6 i 6 m the polynomials φi(x, y) ∈
Z[x, y] have degree di > 1. Suppose also that these polynomials satisfy the condition
that d1 + · · · + dm 6 d, that F (x, y) is a polynomial in φ1, . . . , φm, and that for
some j with 1 6 j < d, one has the upper bound∑

n∈Z0

rF (n;X)2 � X2+ε +Xε
∑

u∈Zm
j

R(u;φ;X)2. (3.6)

Note that by (3.3) and (3.5), this condition is already met when φ = ψ, wherein
we take j = 1. It is possible that the intersection (3.4) is proper for every available
choice of u, by which we mean that the intersection over C consists of isolated
points only, and in such circumstances an application of Bezout’s theorem leads to
the bound R(u;φ;X) = O(1) uniformly in u, whence∑

u∈Zm
j

R(u;φ;X)2 �
∑

u∈Zm
j

R(u;φ;X) � X2.

If, on the other hand, there exists a choice of u in the summation for which the
intersection defined by (3.4) is improper, say u = u∗, then the polynomials φi− u∗i
(1 6 i 6 m) must possess a non-trivial common factor χm+1 ∈ Z[x, y]. Denote by
χ1, . . . , χm ∈ Z[x, y] the quotient polynomials satisfying the equations

φi(x, y)− u∗i = χm+1(x, y)χi(x, y) (1 6 i 6 m). (3.7)

Then it is apparent that

∑
u∈Zm

j

R(u;φ;X)2 �
m∑

i=1

R(u∗i ;φi;X)2

+
∑

u∈(Zj+1\{0})m

( ∑
v∈Zm+1

j+1
vivm+1=ui (16i6m)

R(v;χ;X)

)2

,

whence by combining Cauchy’s inequality with an elementary divisor function es-
timate, one obtains∑

u∈Zm
j

R(u;φ;X)2 � X2 +Xε
∑

u∈(Zj+1\{0})m

∑
v∈(Zj+1\{0})m+1

vivm+1=ui (16i6m)

R(v;χ;X)2

6 X2 +Xε
∑

v∈Zm+1
j+1

R(v;χ;X)2. (3.8)

Let {χi1 , . . . , χil
} denote the subset of {χ1, . . . , χm+1} in which constant poly-

nomials are omitted. Then it is apparent from (3.7) and our initial hypothesis that
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F (x, y) is a polynomial in χi1 , . . . , χil
. If the degrees of the latter polynomials are

respectively e1, . . . , el, then it is clear from (3.7) also that

e1 + · · ·+ el < d1 + · · ·+ dm 6 d.

Also, on combining the hypothesis (3.6) with (3.8), one deduces that∑
n∈Z0

rF (n;X)2 � X2+ε +Xε
∑

w∈Zl
j+1

R(w;χi1 , . . . , χil
;X)2. (3.9)

In view of the above discussion, therefore, we infer from the hypotheses concluding
with (3.6) either that ∑

n∈Z0

rF (n;X)2 � X2+ε, (3.10)

or that (3.9) holds with l = 1, or else that these initial hypotheses again hold,
but with j replaced by j + 1, and with the m-tuple φ replaced by an m′-tuple of
polynomials with strictly smaller degree in the sense that their sum of degrees is
strictly smaller. Since the sum of the degrees of the φi must always be at least
1, we conclude that repeated application of this reduction must terminate after at
most d steps either with the conclusion (3.10), or else with the conclusion that (3.9)
holds with l = 1 and j = d. In the former case we deduce that∑

n∈Z
rF (n;X)2 � X2+ε. (3.11)

In the latter situation, meanwhile, we may conclude that polynomials G(x, y) ∈
Z[x, y] and g(t) ∈ Q[t] exist satisfying the conditions (b), (c) of the statement
of Lemma 3.2. If G(x, y) has degree 1, or else is degenerate of degree exceeding
1, moreover, then it follows from conditions (b) and (c) that F (x, y) is itself de-
generate, contrary to our earlier hypotheses. Thus condition (a) is also satisfied.
Furthermore, our above discussion also yields the bound∑

n∈Z
rF (n;X)2 � X2+ε +Xε

∑
n∈Z

rG(n;X)2. (3.12)

On combining the estimates (3.1), (3.2), (3.11) and (3.12), we find that the
conclusion of the lemma follows in all cases.

In the later stages of our argument we are reduced to equations quadratic with
respect to a subset of the variables. These we handle with the aid of the following
elementary estimate.

Lemma 3.3. Let a, b, c be integers with abc 6= 0, and let S(a, b, c;P ) denote the
number of integral solutions of the equation ax2+by2 = c, with |x| 6 P and |y| 6 P .
Then for each positive number ε, one has S(a, b, c;P ) � 1 + (|abc|P )ε.

Proof. This well-known estimate can be found in Estermann [8] or Vaughan and
Wooley [20, Lemma 3.5].

We now provide the refinement of Lemma 3.2 of such utility in quadratic cases,
basing our argument on that occurring in the proof of Lemma 7.1 of [22].
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Lemma 3.4. Let X denote a large real number. Suppose that F (x, y) ∈ Z[x, y] is a
non-degenerate polynomial of degree d > 2, and suppose also that F (x, y) has degree
precisely 2 in terms of x. Suppose in addition that for no rational numbers λ and
µ is it true that there exists a polynomial f(x, y) ∈ Z[x, y] for which the equation

F (x, y) = λf(x, y)2 + µ

is satisfied identically. Further, suppose that for some fixed positive number A, the
coefficients of F are each bounded in absolute value by XA. Then in the notation
defined in the statement of Lemma 3.2, one has∑

n∈Z
rF (n;X)2 � X2+ε.

Proof. We may rewrite the polynomial F (x, y) in the form

F (x, y) = α(y)x2 + β(y)x+ γ(y), (3.13)

where α(y) is a polynomial in y with integral coefficients which is not identically
zero, though possibly constant, and β(y), γ(y) ∈ Z[y]. Let R1(X) denote the num-
ber of solutions of the equation

F (x1, y1) = F (x2, y2), (3.14)

with |xi| 6 X, |yi| 6 X (i = 1, 2), in which α(yi) = 0 for i = 1 or 2. Define the
polynomial ∆(y) by

∆(y) = β(y)2 − 4α(y)γ(y), (3.15)

and let R2(X) denote the corresponding number of solutions of (3.14) in which
α(yi) 6= 0 (i = 1, 2), and one has that ∆(y) is identically zero as a polynomial in
y. Let R3(X) denote the corresponding number of solutions in which α(yi) 6= 0
(i = 1, 2), and ∆(y) is not identically zero as a polynomial in y, and moreover one
has

α(y2)∆(y1) = α(y1)∆(y2). (3.16)

Finally, let R4(X) denote the corresponding number of solutions with α(yi) 6= 0
(i = 1, 2), and for which the equation (3.16) does not hold. Then plainly,

∑
n∈Z

rF (n;X)2 6
4∑

i=1

Ri(X). (3.17)

We first bound R1(X). Suppose that α(yi) = 0 for i = 1, 2. Since α(y) is
not identically zero, it follows that there are at most d2 permissible choices for y.
Since there are trivially O(X2) possible choices for x, we find that the contribution
to R1(X) from this first class of solutions is O(X2). Consider next the remaining
solutions for which α(yi) = 0 for at most one value of i. By relabelling variables, we
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may suppose that α(y1) = 0. There are consequently at most d choices permissible
for y1. Fix any one such choice, and also fix any one of the O(X) available choices
for x1. Since α(y2) is non-zero, it follows from (3.13) and (3.14) that the latter
equation is explicit in both x2 and y2, whence a simple counting argument reveals
that the number of possible choices for x2 and y2 satisfying (3.14) is at most O(X).
There are thus O(X2) solutions of this second type, whence

R1(X) � X2. (3.18)

Consider next the solutions counted by R2(X). There exist non-trivial polyno-
mials α1(y), α2(y) ∈ Z[y] with the property that α(y) = α1(y)α2(y)2, and α1(y)
has no repeated factors over C[y]. Since α(y) is a non-trivial polynomial in y, it
follows from (3.15) that if ∆(y) is identically zero as a polynomial in y, then β(y) is
divisible by the polynomial α1(y)α2(y). Such is immediate when γ(y) is non-zero,
and when γ(y) is equal to zero one has β(y) = 0, and the desired conclusion again
follows. But if β(y) is divisible by α1(y)α2(y), then the vanishing of ∆(y) ensures,
by (3.15), that γ(y) is divisible by α1(y). We therefore deduce that for some non-
zero integers κ1, κ2, and some polynomial in y with integral coefficients, say δ(y),
one has

κ1F (x, y) = α1(y)(κ2α2(y)x+ δ(y))2 (3.19)

identically as a polynomial in x and y. We observe here that since α1(y) and
α2(y) are divisors of α(y), it follows that their coefficients have absolute values at
most O(XA) (see, for example, Granville [9]). One finds in like manner that the
coefficients of δ(y), and also κ1 and κ2, may be chosen with absolute values at
most O(X2A). Notice also that our hypothesis that F is not a rational multiple
of the square of a polynomial ensures that α1(y) is not a constant polynomial.
Let x2 and y2 be any one of the O(X2) permissible choices counted by R2(X).
Since, by an elementary counting argument, the number of solutions of the equation
F (x, y) = 0 with |x| 6 X and |y| 6 X is O(X), the total number of solutions
x,y counted by R2(X) with F (x2, y2) = 0 is O(X2). We may therefore suppose
that our aforementioned choice of x2, y2 satisfies the condition that F (x2, y2) 6= 0,
whence κ1F (x2, y2) 6= 0. But it follows from (3.14) and (3.19) that α1(y1) and
κ2α2(y1)x1 + δ(y1) are both divisors of the fixed non-zero integer κ2F (x2, y2). By
elementary estimates for the divisor function, therefore, there are at most O(Xε)
possible choices for integers d1 and d2 with α1(y1) = d1 and κ2α2(y1)x1+δ(y1) = d2.
Since α1(y) is not a constant polynomial, the first of the latter equations shows that
there are at most d possible choices for y1. Given any one fixed such choice of y1,
on noting that the non-vanishing of α(y1) ensures also that α2(y1) 6= 0, one finds
that x1 is uniquely determined from the second of these equations. Thus we deduce
that

R2(X) � X2+ε. (3.20)

Consider next the solutions x,y counted by R3(X). If, on the one hand, the
polynomial equation (3.16) is non-trivial in y1 and y2, then a simple counting
argument shows that there are O(X) permissible choices for y1 and y2 satisfying
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(3.16). Given any one such choice of y, in view of the presumed non-vanishing of
α(yi) (i = 1, 2), it follows from (3.13) that the equation (3.14) is non-trivial in x1

and x2, whence there are O(X) permissible choices of x1 and x2 satisfying (3.14).
Thus the total number of solutions of this type is O(X2). If, on the other hand,
the polynomial equation (3.16) is trivial in y1 and y2, then it follows that ∆(y)
is a non-zero constant multiple of α(y), say ∆(y) = λα(y). We may again write
α(y) = α1(y)α2(y)2, with α1 and α2 defined as in the treatment of R2(X). An
inspection of (3.15) now reveals that

λα1(y)α2(y)2 = β(y)2 − 4α1(y)α2(y)2γ(y),

whence β(y) is a multiple of α1(y)α2(y). Write β(y) = µ−1β1(y)α1(y)α2(y), where
µ is a non-zero integer and β1(y) ∈ Z[y]. Note here that, as in the above discussion,
one may suppose that the coefficients of β1(y), α1(y) and α2(y), together with the
integer µ, have absolute values at most O(X2A). We thus infer that

4µ2γ(y) = α1(y)β1(y)2 − λµ2.

On substituting into (3.13), we find that

4µ2F (x, y) = α1(y)(2µα2(y)x+ β1(y))2 − λµ2.

In particular, our hypothesis that F (x, y) is not a translation of a rational multiple
of a square of a polynomial ensures that α1(y) is not a constant polynomial. In
this way, it follows that the equation (3.14) takes the shape

α1(y1)(2µα2(y1)x1 + β1(y1))2 = α1(y2)(2µα2(y2)x2 + β1(y2))2.

A comparison between the polynomial α1(y)(2µα2(y)x + β1(y))2 and that on the
right hand side of (3.19) reveals that we may now apply the argument concluding
the treatment of R2(X) above in order to conclude that the number of solutions of
this type is O(X2+ε). Thus we have

R3(X) � X2+ε. (3.21)

Finally, we discuss the solutions counted by R4(X). Let x,y be any solution of
(3.14) of the latter type. Then on recalling (3.13), (3.14) and (3.15), we deduce
that

α(y2)(2α(y1)x1 + β(y1))2 − α(y1)(2α(y2)x2 + β(y2))2

= α(y2)∆(y1)− α(y1)∆(y2). (3.22)

But in view of our hypotheses relevant to R4(X), for each of the O(X2) permissible
values of y, one has that the right hand side of (3.22) is a non-zero integer, say
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N . Fix any one such choice of y, and note that our hypotheses ensure also that
α(yi) 6= 0 (i = 1, 2). But by Lemma 3.3, the number of solutions of the equation

α(y2)ξ2 − α(y1)η2 = N,

with ξ and η each bounded in absolute value by a fixed power of X, is O(Xε).
Consequently, the number of possible xi (i = 1, 2) is also O(Xε), and thus we
conclude that

R4(X) � X2+ε. (3.23)

The conclusion of the lemma now follows immediately on collecting together the
estimates (3.18), (3.20), (3.21), (3.23) with (3.17).

We note that the treatment ofK3(X;h) in the proof of Lemma 7.1 of [22] contains
an oversight in that β(y;h) was presumed to be necessarily zero, as a consequence
of the argument presented therein. The treatment of R3(X) above takes care of this
oversight, and the diligent reader will find that there are no substantive difficulties
encountered here. Indeed, one may assume in the above treatment that α2(y) is
identically equal to 1 when applying this argument in the context of the treatment
of K3(X;h) in the aforementioned work.

Before proceeding to the main inductive part of our argument, we require still
another estimate of simpler type than those embodied in Lemmata 3.2 and 3.4.

Lemma 3.5. Let X denote a large real number. Suppose that F (x, y) ∈ Z[x, y]
is a non-degenerate polynomial of total degree 2, and suppose also that F (x, y)
has degree precisely 1 in terms of x. Further, suppose that for some fixed positive
number A, the coefficients of F are each bounded in absolute value by XA. Then
in the notation defined in the statement of Lemma 3.2, one has∑

n∈Z
rF (n;X)2 � X2+ε.

Proof. We may rewrite the polynomial F (x, y) in the shape

F (x, y) = α(y)x+ β(y),

where α(y) is a linear polynomial in y with integral coefficients that is not identi-
cally zero, and β(y) is a quadratic polynomial in y with integral coefficients. By
considering the putative coefficient of x2, it is apparent that F (x, y) cannot be the
translate of a rational multiple of the square of a polynomial. Consequently, when
β(y) has non-vanishing leading coefficient we may reverse the roles of x and y, and
appeal to Lemma 3.4 in order to establish the conclusion of the lemma. When
the leading coefficient of β(y) is zero, on the other hand, it follows that for some
integers a, b, c and d, with a 6= 0, one has

F (x, y) = axy + bx+ cy + d,
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whence
aF (x, y) = (ax+ c)(ay + b) + ad− bc.

But then one has ∑
n∈Z

rF (n;X)2 =
∑
n∈Z

rG(n;X)2, (3.24)

where G(x, y) = (ax+ c)(ay + b).
When n is non-zero and G(x, y) = n, an elementary divisor function estimate

shows that there are O(Xε) possible choices for ax+ c and ay + b, whence also for
x and y. When n is zero, on the other hand, one has that ax + c = 0 or else that
ay + b = 0, so that the corresponding number of solutions is O(X). Consequently,∑

n∈Z
rG(n;X)2 � rG(0;X)2 +Xε

∑
n∈Z\{0}

rG(n;X) � X2+ε,

and the desired conclusion is again immediate, in view of (3.24).

4. The inductive step. We are now equipped to discuss the main inductive step
in the proof of Theorem 1. Consider a non-degenerate binary form Ψ(x, y) of the
shape (2.1), and define the exponential sum HΨ(θ;X) as in (2.2). When X is a
large real number and s is a positive number, define

Is(X) =
∫ 1

0

|HΨ(α;X)|sdα.

Lemma 4.1. Let Ψ(x, y) ∈ Z[x, y] be a non-degenerate form of degree k, with
3 6 k 6 10, of the shape discussed above. Then one of the following statements is
true.

(i) For 1 6 j 6 k, and for each positive number ε, one has

I2j−1(X) � X2j−j+ε.

(ii) For each positive number s, and for each integer j with 1 6 j 6 k − 3, one has
for each ε > 0 the upper bound

Is+2j (X) � X2j+1−1Is(X) +X2j+1− 1
2 (j+2−δ)+ε(I2s(X))1/2,

where δ = δ(j) is defined by

δ(j) =
{

1/(k − j), when 1 6 j < k − 3,
0, when j = k − 3.

Proof. We begin by noting that the conclusion (i) of the lemma is immediate from
Lemma 2.2 when k = 3 or 4, and also when k > 5 and j = 1 or 2. When k > 5
and t > k − 1, moreover, the conclusion of Lemma 2.3 demonstrates either that
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conclusion (i) holds, or else that conclusion (ii) will follow provided we establish
the validity of the latter when Ψ is replaced by a condensation Υ of Ψ of the shape
(2.1) wherein t = 2. There is therefore no loss of generality in supposing that
2 6 t 6 k−2. Similarly, when k > 5 and t = k−2, the conclusions of Lemmata 2.4
and 2.5 ensure either that conclusion (i) holds, or else that conclusion (ii) will follow
provided we establish the validity of the latter when Ψ is replaced by a condensation
Υ of Ψ of the shape (2.1) wherein t = 2 or t = 3. We therefore deduce that the
conclusion of the lemma follows by establishing the inequality recorded in (ii) for
those polynomials Ψ for which either k = 5 and t = 2 or 3, or else 6 6 k 6 10 and
2 6 t 6 k − 3. We suppose henceforth that the latter conditions do indeed hold.

We now modify the argument applied in §§6 and 7 of [22], applying a more
elaborate differencing procedure, and considering also moments other than the even
ones. Let w be a parameter to be chosen later satisfying the inequalities

max{1, j − k + t+ 2} 6 w 6 min{j, t− 1}. (4.1)

The significance of these inequalities will become clear in due course. For the
moment we remark only that our hypotheses concerning j, t and k ensure that an
integral value of w can always be found satisfying (4.1).

We first view the exponential sum H(θ) = HΨ(θ;X) as an exponential sum over
v, so that on applying Hölder’s inequality to (2.2), and then making use of Lemma
2.6, we deduce that

|H(θ)|2
w

� X2w−1
∑
|u|6X

∣∣∣ ∑
|v|6X

e(θΨ(u, v))
∣∣∣2w

� X2w+1−w−2
∑

h∈[−2X,2X]w

∑
v∈I(h)

K(θ;h; v), (4.2)

where I = I(h1, . . . , hw) is an interval of integers contained in [−X,X], and

K(θ;h; v) =
∑
|u|6X

e(∆0,w(θΨ(u, v);h)).

Next applying Lemma 2.6 to the latter exponential sum, we obtain

|K(θ;h; v)|2
j−w

� X2j−w−j+w−1
∑

g∈[−2X,2X]j−w

∑
u∈J(g)

e(θp(v;u;g;h)), (4.3)

where J = J(g1, . . . , gj−w) is an interval of integers contained in [−X,X], and the
polynomial p(v;u;g;h) is defined by

p(v;u;g;h) = ∆j−w,w(Ψ(u, v);g;h). (4.4)

We note for future reference that, on recalling (4.1), and considering the term
Buk−tvt in (2.1), it is apparent that the polynomial p(v;u;g;h) is not identically
zero.
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On combining (4.2) and (4.3) via Hölder’s inequality, we conclude that

|H(θ)|2
j

� X2j+1−j−2G(θ), (4.5)

where
G(θ) =

∑
m∈[−2X,2X]j

∑
u∈J(g)

∑
v∈I(h)

e(θp(v;u;g;h)), (4.6)

and here, and throughout, we adopt the convention that

m = (m1, . . . ,mj), h = (m1, . . . ,mw) and g = (mw+1, . . . ,mj). (4.7)

Define the exponential sum G1(α) by

G1(α) =
∑
m

∑
u,v

e(αp(v;u;g;h)),

where the summation is restricted to the values of m, u, v satisfying

m ∈ [−2X, 2X]j , u ∈ J(g), v ∈ I(h), (4.8)

with
p(v;u;g;h) 6= 0. (4.9)

Since p(v;u;g;h) is not identically zero, it follows from an elementary argument
that the number of choices of m, u, v satisfying (4.8) and p(v;u;g,h) = 0 is at most
O(Xj+1). Consequently, one has

|G(α)− G1(α)| � Xj+1.

Then in view of (4.5), we obtain

Is+2j (X) =
∫ 1

0

|H(α)|s+2j

dα� X2j+1−j−2

∫ 1

0

G(α)|H(α)|sdα

� X2j+1−1

∫ 1

0

|H(α)|sdα+X2j+1−j−2

∫ 1

0

|G1(α)H(α)s|dα.

Let T denote the mean value

T (X) =
∫ 1

0

|G1(α)|2dα. (4.10)

Then an application of Schwarz’s inequality leads us to the estimate

Is+2j (X) � X2j+1−1Is(X) +X2j+1−j−2(T (X))1/2(I2s(X))1/2. (4.11)
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Next observe that, in view of (4.8) and (4.9), and on considering the diophantine
equation underlying (4.10), the mean value T (X) is bounded above by K(X), where
K(X) denotes the number of integral solutions of the equation

p(x1; y1;g1;h1) = p(x2; y2;g2;h2), (4.12)

with mi ∈ [−2X, 2X]j , in the sense of (4.7), also with |xi|, |yi| 6 X (i = 1, 2),
and subject to the conditions p(xi, yi;gi;hi) 6= 0 (i = 1, 2). A comparison between
(4.11) and the estimate claimed in the statement of the lemma therefore reveals
that the desired conclusion follows immediately from the upper bound

K(X) � Xj+2+δ+ε. (4.13)

We henceforth concentrate our efforts on establishing (4.13).
On recalling (4.4), a modicum of computation reveals that

p(x; y;g;h) = m1 . . .mjF (x, y;m), (4.14)

where

F (x, y;m) =
k∑

i=t

Diφk−i(y;m)ψi(x;m), (4.15)

in which Di is an integer for t 6 i 6 k, and Dt 6= 0, and in which each ψi(x;m) is
a polynomial with integral coefficients of degree i− w with respect to x, and each
φk−i(y;m) is a polynomial with integral coefficients of degree k − i − j + w with
respect to y. In view of (4.1), one has 2 6 k− t− j +w 6 k− j − 1 and t−w > 1.
Thus F (x, y;m) has degree at least 1 with respect to x, and degree at least 2 and
at most k − j − 1 with respect to y. We note also for future reference that when
w = 1 and j = 1, one may take

φk−t(y;m) = yk−t and ψt(x;m) = m−1((x+m)t − xt). (4.16)

Finally, we observe that the argument surrounding equations (6.17) and (6.18)
of [22] easily establishes that when ml 6= 0 (1 6 l 6 j), then one has that the
polynomial F (x, y;m) is non-degenerate with respect to x and y.

When m ∈ [−2X, 2X]j , let ρ(n;m) denote the number of integral solutions of
the equation p(x; y;g;h) = n, with |x|, |y| 6 X. Then it follows from (4.14) and
(4.12) that

K(X) =
∑

n∈Z\{0}

( ∑
|m1|62X

m1|n

· · ·
∑

|mj |62X
mj |n

ρ(n;m)

)2

.
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Consequently, on applying Cauchy’s inequality in combination with an elementary
estimate for the divisor function, one obtains

K(X) � Xε
∑

n∈Z\{0}

∑
m∈[−2X,2X]j

mi 6=0 (16i6j)

ρ(n;m)2

� Xj+ε max
m∈[−2X,2X]j

mi 6=0 (16i6j)

∑
n∈Z\{0}

ρ(n;m)2

= Xj+ε max
m∈[−2X,2X]j

mi 6=0 (16i6j)

M(X;m), (4.17)

where M(X;m) denotes the number of solutions of the equation

F (x1, y1;m) = F (x2, y2;m), (4.18)

with |xi|, |yi| 6 X (i = 1, 2).
We recall at this point that, by hypothesis, one has either

k = 5, t = 2 or 3 and j = 1 or 2,

or else
6 6 k 6 10, 2 6 t 6 k − 3 and 1 6 j 6 k − 3.

We now divide our argument into a number of cases, our aim being to make a choice
of w, satisfying the condition (4.1), for which the estimates of §3 prove effective.

(a) (k, t, j) satisfies j = k − 3. We take w = t − 1. In this situation it is apparent
that

k − t− j + w = 2, (4.19)

and also that
(k − j, t− w) = 1. (4.20)

Consider the shape of the polynomial F (x, y;m) when the conditions (4.19) and
(4.20) hold. We isolate the monomial of highest degree with respect to y that has
highest degree with respect to x. In view of (4.15) and the associated discussion,
this monomial has the shape

Dtx
t−wyk−t−j+w. (4.21)

Suppose, if possible, that there exist polynomials G(x, y) ∈ Z[x, y] and g(t) ∈
Q[t] satisfying the conditions (a) and (b) of the statement of Lemma 3.2, and
also satisfying the condition that F (x, y) = g(G(x, y)). Then the monomial of
highest degree with respect to y that has highest degree with respect to x in the
polynomial g(G(x, y)), must necessarily have the shape Cxhlyhm, where h is the
degree of g(t). But the condition (4.20) implies that

(k − t− j + w, t− w) = 1, (4.22)
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and so the latter conclusion contradicts (4.21). It follows, in particular, that for
no rational numbers λ and µ is it true that there exists a polynomial f(x, y) ∈
Z[x, y] for which the equation

F (x, y;m) = λf(x, y)2 + µ

is satisfied identically in x and y. But in view of (4.21) and (4.19), the polyno-
mial F (x, y;m) has degree precisely 2 with respect to y. Since, moreover, the
coefficients of F are each bounded in absolute value by a fixed power of X, it
follows from Lemma 3.4 that in this case one has

M(X;m) � X2+ε. (4.23)

On recalling (4.17), we find that (4.13) holds with δ = 0, and thus the proof of
the lemma in the case j = k − 3 is complete.

(b) (k, t, j) satisfies t− 1 6 j < k − 3. We take w = t− 1, and find that (4.20), and
hence also (4.22), remain true. In view of the discussion in case (a) above, it
follows that there can exist no polynomials g and G that satisfy the hypotheses
(a), (b), (c) of Lemma 3.2(i). We therefore deduce from Lemma 3.2(ii) that in
this case one has

M(X;m) � X2+1/(k−j)+ε. (4.24)

Recalling (4.17) again, we now find that (4.13) holds with δ = 1/(k − j), and
hence the proof of the lemma follows in the case currently under consideration.

(c) (k, t, j) = (5, 3, 1). We take w = 1, and find that (4.19) holds. Then it follows
from (4.21) that in the polynomial F (x, y;m), the monomial of highest degree
with respect to y, that has highest degree with respect to x, has the shape Cx2y2.
It is possible that Lemma 3.4 succeeds in supplying the bound (4.23). If such
is not the case, then there exists a polynomial f(x, y) ∈ Z[x, y], and rational
numbers λ and µ, for which F (x, y;m) = λf(x, y)2 +µ. Moreover, it is apparent
that λ must be non-zero, and our previous discussion ensures that f(x, y) must
be non-degenerate of total degree 2, with degree precisely one in terms of y.
Thus we deduce that

M(X;m) 6
∑
n∈Z

rf (n;X)2,

whence by Lemma 3.5 one again obtains the conclusion (4.23). Recalling (4.17),
we now find that (4.13) holds with δ = 0, and thus the proof of the lemma again
follows.
By combining the conclusions of cases (a) and (b) above, one finds that when

k = 5 and j = 1 or 2, our hypothesis that t = 2 or 3 leaves only the situation in
which (k, t, j) = (5, 3, 1) to consider. But the latter case is resolved in case (c) above,
and so henceforth we may suppose that 6 6 k 6 10. In the latter circumstances,
cases (a) and (b) also dispose of all cases in which t = 2, and also all cases wherein
j > t− 1. Thus we may suppose henceforth that

6 6 k 6 10, 3 6 t 6 k − 3 and 1 6 j 6 t− 2.
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We treat the remaining allowable cases by hand.
(d) (k, t, j) = (6, 3, 1), (7, 4, 2). We take w = j, and find that (4.20) holds, since

(5, 2) = 1. The argument of part (b) therefore yields the bound (4.24), and
hence also (4.13).

(e) (k, t, j) = (8, 3, 1), (8, 4, 1), (8, 5, 1). We take w = 1, and find that (4.20) holds,
since (7, t− 1) = 1 for t = 3, 4, 5. The argument of part (b) therefore yields the
bound (4.24), and hence also (4.13).

(f) (k, t, j) = (8, 5, 3). We take w = 3, and find that (4.20) holds, since (5, 2) = 1.
The argument of part (b) therefore yields the bound (4.24), and hence also (4.13).

(g) (k, t, j) = (9, 4, 1), (9, 6, 1). We take w = 1, and find that (4.20) holds, since
(8, t − 1) = 1 for t = 4, 6. The argument of part (b) therefore yields the bound
(4.24), and hence also (4.13).

(h) (k, t, j) = (9, 4, 2), (9, 5, 2), (9, 6, 2). We take w = 2, and find that (4.20) holds,
since (7, t− 2) = 1 for t = 4, 5, 6. The argument of part (b) therefore yields the
bound (4.24), and hence also (4.13).

(i) (k, t, j) = (10, 3, 1), (10, 5, 1), (10, 6, 1). We take w = 1, and find that (4.20)
holds, since (9, t − 1) = 1 for t = 3, 5, 6. The argument of part (b) therefore
yields the bound (4.24), and hence also (4.13).

(j) (k, t, j) = (10, 4, 2), (10, 6, 2). We take w = 1, and find that (4.20) holds, since
(8, t − 1) = 1 for t = 4, 6. The argument of part (b) therefore yields the bound
(4.24), and hence also (4.13).

(k) (k, t, j) = (10, 5, 2), (10, 7, 2). We take w = 2, and find that (4.20) holds, since
(8, t − 2) = 1 for t = 5, 7. The argument of part (b) therefore yields the bound
(4.24), and hence also (4.13).

(l) (k, t, j) = (10, 5, 3), (10, 6, 3), (10, 7, 3). We take w = 3, and find that (4.20)
holds, since (7, t − 3) = 1 for t = 5, 6, 7. The argument of part (b) therefore
yields the bound (4.24), and hence also (4.13).

(m) (k, t, j) = (9, 6, 4). We take w = 3, and find that (4.19) and (4.20) both hold,
since (5, 3) = 1. The argument of part (a) now establishes the bound (4.23), and
hence also (4.13).

(n) (k, t, j) = (10, 7, 5). We take w = 4, and find that (4.19) and (4.20) both hold,
since (5, 3) = 1. The argument of part (a) now establishes the bound (4.23), and
hence also (4.13).

(o) (k, t, j) = (7, 4, 1). We take w = 1, and find from (4.21) that in the polynomial
F (x, y;m), the monomial of highest degree with respect to y, that has highest
degree with respect to x, has the shape Cx3y3. It is possible that Lemma 3.2
succeeds in supplying the bound (4.24). If such is not the case, then there exist
polynomials G(x, y) ∈ Z[x, y] and g(t) ∈ Q[t] satisfying the conditions (a), (b),
(c) of Lemma 3.2. It is evident, moreover, that in such circumstances the degree
of g must be 3, and the total degree of G(x, y) must be 2, and also the degree of
G(x, y) with respect to y must be 1. In the latter circumstances, it follows from
Lemma 3.5 that one has the estimate∑

n∈Z
rG(n;X)2 � X2+ε, (4.25)
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whence by Lemma 3.2(i),

M(X;m) � X2+1/(k−j)+ε +Xε
∑
n∈Z

rG(n;X)2

� X2+1/(k−j)+ε. (4.26)

Then in any case, one has the upper bound (4.24), and hence (4.13).
(p) (k, t, j) = (8, 5, 2). We take w = 2, and find from (4.21) that in the polynomial

F (x, y;m), the monomial of highest degree with respect to y, that has highest
degree with respect to x, has the shape Cx3y3. The desired bound (4.24), and
hence (4.13), now follows by the argument of case (o).

(q) (k, t, j) = (9, 5, 3). We take w = 2, and find from (4.21) that we may again apply
the argument of case (p).

(r) (k, t, j) = (9, 6, 3). We take w = 3, and find from (4.21) that we may again apply
the argument of case (p).

(s) (k, t, j) = (10, 6, 4). We take w = 3, and find from (4.21) that we may again
apply the argument of case (p).

(t) (k, t, j) = (10, 7, 4). We take w = 4, and find from (4.21) that we may again
apply the argument of case (p).

(u) (k, t, j) = (7, 3, 1). We take w = 1, and find from (4.21) that in the polynomial
F (x, y;m), the monomial of highest degree with respect to y, that has highest
degree with respect to x, has the shape Cx2y4. It follows that if there exist
polynomials G(x, y) ∈ Z[x, y] and g(t) ∈ Q[t] satisfying the conditions (a), (b),
(c) of Lemma 3.2, then g must have degree 2. Moreover, in the polynomial
G(x, y), the monomial of highest degree with respect to y, that has highest
degree with respect to x, must have the shape C ′xy2. In such circumstances,
one may apply the argument of case (a) above to obtain the bound (4.25). Then
the estimate (4.24) follows in all circumstances from Lemma 3.2, and this suffices
to establish (4.13).

(v) (k, t, j) = (8, 4, 2). We take w = 2, and find from (4.21) that in the polynomial
F (x, y;m), the monomial of highest degree with respect to y, that has highest
degree with respect to x, has the shape Cx2y4. The desired bound (4.24), and
hence (4.13), now follows by the argument of case (u).

(w) (k, t, j) = (9, 5, 1). We take w = 1, and find from (4.21) that in the polynomial
F (x, y;m), the monomial of highest degree with respect to y, that has highest
degree with respect to x, has the shape Cx4y4. It follows that if there exist
polynomials G(x, y) ∈ Z[x, y] and g(t) ∈ Q[t] satisfying the conditions (a), (b),
(c) of Lemma 3.2, then g must have degree either 2 or 4. When the degree of g
is 4, the polynomial G(x, y) must have total degree 2, and the degree of G(x, y)
with respect to y must be 1. In these circumstances, Lemma 3.5 establishes
the estimate (4.25). When the degree of g is 2, meanwhile, we may suppose
without loss of generality that there are no rational numbers λ and µ for which
a polynomial f(x, y) ∈ Z[x, y] exists satisfying G(x, y) = λf(x, y)2 +µ (if such a
polynomial f were to exist, then we would be in the situation already considered
wherein the degree of g was presumed to be 4). But then, in the polynomial
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G(x, y), the monomial of highest degree with respect to y, that has highest
degree with respect to x, has the shape C ′x2y2. The hypotheses of Lemma 3.4
are therefore satisfied with F replaced by G, and the upper bound (4.25) again
follows. We may therefore conclude from Lemma 3.2(i) that in either case, one
has the estimate (4.26). If no such polynomials G and g exist, on the other hand,
then the estimate (4.26) is immediate from Lemma 3.2(ii).

(x) (k, t, j) = (10, 4, 1). We take w = 1, and find from (4.21) that in the polynomial
F (x, y;m), the monomial of highest degree with respect to y, that has highest
degree with respect to x, has the shape Cx3y6. It follows that if there exist
polynomials G(x, y) ∈ Z[x, y] and g(t) ∈ Q[t] satisfying the conditions (a), (b),
(c) of Lemma 3.2, then g must have degree 3. Moreover, in the polynomial
G(x, y), the monomial of highest degree with respect to y, that has highest
degree with respect to x, has the shape C ′xy2. Thus we may proceed as in case
(u) to obtain the desired estimate (4.13).

(y) (k, t, j) = (9, 3, 1). We take w = 1, and find from (4.21) that in the polynomial
F (x, y;m), the monomial of highest degree with respect to y, that has highest
degree with respect to x, has the shape Cx2y6. It follows that if there exist
polynomials G(x, y) ∈ Z[x, y] and g(t) ∈ Q[t] satisfying the conditions (a), (b),
(c) of Lemma 3.2, then g must have degree 2, and G(x, y) must have the shape

G(x, y) = αxy3 + βy3 +H(x, y), (4.27)

with H(x, y) of degree at most 2 with respect to y. In view of (4.16), one finds
that with a suitable non-zero constant K, one has that

F (x, y;m) = Ky6(3x2 + 3xm+m2) + I(x, y;m), (4.28)

where I(x, y;m) is a polynomial of degree at most 5 with respect to y. Since we
may suppose that g has degree 2, it follows from (4.27) and (4.28) that there is
a non-zero number a with

a(αxy3 + βy3)2 = Ky6(3x2 + 3xm+m2).

On equating coefficients of powers of x, we find that

aα2 = 3K, 2aαβ = 3Km, aβ2 = Km2,

whence
9K2m2 = 4(aα2)(aβ2) = 12K2m2.

This yields a contradiction whenever m 6= 0, as we may suppose. In this way we
find that no such polynomials G, g exist, and hence Lemma 3.2(ii) establishes
that the estimate (4.26) holds.

(z) (k, t, j) = (10, 7, 1). We take w = 1, and find from (4.21) that in the polynomial
F (x, y;m), the monomial of highest degree with respect to y, that has highest
degree with respect to x, has the shape Cx6y3. It follows that if there exist
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polynomials G(x, y) ∈ Z[x, y] and g(t) ∈ Q[t] satisfying the conditions (a), (b),
(c) of Lemma 3.2, then g must have degree 3, and G(x, y) must have the shape

G(x, y) = αyx2 + βyx+ γy +H(x), (4.29)

with H(x) a polynomial independent of y. In view of (4.16), one finds that with
a suitable non-zero constant K, one has that

F (x, y;m) =Ky3(7x6 + 21x5m+ 35x4m2 + 35x3m3 + 21x2m4 + 7xm5 +m6)

+ I(x, y;m), (4.30)

where I(x, y;m) is a polynomial of degree at most 2 with respect to y. Since we
may suppose that g has degree 3, it follows from (4.29) and (4.30) that there is
a non-zero number a with

a(αx2y+βxy + γy)3

= Ky3(7x6 + 21x5m+ 35x4m2 + 35x3m3 + 21x2m4 + 7xm5 +m6).

On equating coefficients of powers of x, we find that

aα3 = 7K, 3aα2β = 21Km, a(3α2γ + 3αβ2) = 35Km2, aγ3 = Km6.

Thus we deduce that

27α6a2Km6 = a3(3α2γ)3 = (35Km2 − 3aαβ2)3,

whence

3375(Km)6 = (35Km2(aα3)− 3(aα2β)2)3

= (245K2m2 − 147K2m2)3 = (98K2m2)3.

Since 3375 6= 983, we obtain a contradiction whenever m 6= 0, as we may suppose.
In this way, we find that no such polynomials G, g exist, and hence Lemma 3.2(ii)
establishes that the estimate (4.26) holds.

On collecting together the conclusions of cases (a)–(z), we find that the estimate
(4.13) holds in all circumstances under consideration. The conclusion of the lemma
now follows immediately from (4.11).

5. The completion of the proof of Theorem 1. We are now prepared to
complete the proof of Theorem 1. We begin with an induction based on the use of
Lemma 4.1 for the small moments.
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Lemma 5.1. Let Ψ(x, y) ∈ Z[x, y] be a non-degenerate form of degree k, with
5 6 k 6 10, of the shape discussed in the opening paragraph of §4. Then for each j
with 3 6 j 6 k − 2, and for each positive number ε, one has∫ 1

0

|HΨ(α;X)|2
j−1

dα� X2j−j+1/(k−j+2)+ε.

Proof. The conclusion of the lemma is either immediate from part (i) of Lemma
4.1, or else we may apply part (ii) of that lemma. By part (i) of Theorem 1, which
we have already established in Lemma 2.2, one has∫ 1

0

|HΨ(α;X)|2dα� X2+ε.

Thus we have
I2(X) � X2+ε.

Suppose that, in fact, one has the estimate

I2j−1(X) � X2j−j+1/(k−j+2)+ε, (5.1)

for 2 6 j 6 J , where J is an integer with 2 6 J 6 k − 3. We apply part (ii) of
Lemma 4.1 with j = J − 1 and s = 2J−1 in order to obtain

Is+2J−1(X) � X2J−1Is(X) +X2J− 1
2 (J+1−δ)+ε(I2s(X))1/2,

with δ = 1/(k − J + 1). On employing the inductive hypothesis (5.1), we obtain

I2J (X) � X2J+1−J−1+1/(k−J+2)+ε +X2J− 1
2 (J+1−δ)+ε(I2J (X))1/2,

whence
I2J (X) � X2J+1−J−1+1/(k−J+1)+ε.

This establishes the inductive hypothesis for j = J + 1, and thus the conclusion of
the lemma follows by induction.

Lemma 5.2. With the hypotheses of the statement of Lemma 5.1, one has∫ 1

0

|HΨ(α;X)| 9
32 2k

dα� X
9
16 2k−k+1+ε.

Proof. As in the proof of the previous lemma, the desired conclusion is either im-
mediate from part (i) of Lemma 4.1, or else we may apply part (ii) of that lemma.
By the conclusion of Lemma 5.1 with j = k − 2, one has

I2k−3(X) =
∫ 1

0

|HΨ(α;X)|2
k−3

dα� X2k−2−k+9/4+ε. (5.2)
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On applying part (ii) of Lemma 4.1 with s = 2k−3 and j = k − 3, one obtains

I2k−2(X) � X2k−2−1I2k−3(X) +X2k−2−(k−1)/2+ε(I2k−2(X))1/2,

whence by (5.2),
I2k−2(X) � X2k−1−k+5/4+ε. (5.3)

An application of Hölder’s inequality establishes the upper bound

I 5
32 2k(X) =

∫ 1

0

|HΨ(α;X)| 5
32 2k

dα

6
(∫ 1

0

|HΨ(α;X)|2
k−2

dα
)1/4(∫ 1

0

|HΨ(α;X)|2
k−3

dα
)3/4

.

Thus, by (5.2) and (5.3) we deduce that

I 5
32 2k(X) � X

5
16 2k−k+2+ε. (5.4)

A second application of part (ii) of Lemma 4.1, now with s = 5
322k and j = k−3,

gives the estimate

I 9
32 2k(X) � X2k−2−1I 5

32 2k(X) +X2k−2−(k−1)/2+ε
(
I 5

16 2k(X)
)1/2

.

But a trivial estimate for HΨ(α;X) demonstrates that

I 5
16 2k(X) � X2k−4

∫ 1

0

|HΨ(α;X)| 9
32 2k

dα = X2k−4
I 9

32 2k(X).

In view of (5.4), therefore, we obtain

I 9
32 2k(X) � X

9
16 2k−k+1+ε +X

9
32 2k−(k−1)/2+ε

(
I 9

32 2k(X)
)1/2

,

and the conclusion of the lemma follows immediately.

The large moments are estimated via the Hardy-Littlewood method by means
of a treatment contained, in all essentials, within the proof of Lemma 7.4 of [22].
We include an account of the proof for the sake of completeness. We first require a
major arc estimate stemming from our version of Weyl’s inequality.

Lemma 5.3. Suppose that Φ(x, y) ∈ Z[x, y] is a non-degenerate form of degree
d > 3, and let α ∈ R.

(i) Suppose that there exist r ∈ Z and q ∈ N with (r, q) = 1 and |α − r/q| 6 q−2.
Then for each ε > 0, one has∑

16x6X

∑
16y6X

e(αΦ(x, y)) � X2+ε
(
q−1 +X−1 + qX−d

)22−d

.

(ii) Whenever r ∈ Z and q ∈ N satisfy 1 6 q 6 X and |qα− r| 6 X1−d, one has∑
16x6X

∑
16y6X

e(αΦ(x, y)) � X2+ε(q +Xd|qα− r|)−22−d

.

Proof. The first conclusion is immediate from Theorem 1 of [22], and the second
conclusion is Lemma 7.3 of [22].
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Lemma 5.4. With the hypotheses of the statement of Lemma 5.1, one has∫ 1

0

|HΨ(α;X)| 1732 2k

dα� X
17
16 2k−k+ε.

Proof. For the sake of concision, we abbreviate HΨ(α;X) to H(α). When r ∈ Z
and q ∈ N, write

M(q, r) =
{
α ∈ [0, 1) : |qα− r| 6 X1−k

}
.

Take M to be the union of the intervals M(q, r) with 0 6 r 6 q 6 X and (r, q) = 1.
Note that the intervals occurring in the latter union are disjoint. Also, write m =
[0, 1) \M. Since Lemma 5.3(i) yields the estimate

sup
α∈m

|H(α)| � X2−22−k+ε,

and Lemma 5.2 establishes that∫ 1

0

|H(α)| 9
32 2k

dα� X
9
16 2k−k+1+ε,

we deduce that∫
m

|H(α)| 1732 2k

dα�
(

sup
α∈m

|H(α)|
)2k−2 ∫ 1

0

|H(α)| 9
32 2k

dα

� X
17
16 2k−k+ε. (5.5)

On making use of Lemma 5.3(ii) and the definition of M, on the other hand, we
obtain∫

M

|H(α)| 1732 2k

dα� X
17
16 2k+ε

∑
16q6X

q∑
a=1

(a,q)=1

∫
|β|6(qXk−1)−1

(q +Xkq|β|)−2dβ

� X
17
16 2k−k+ε

∑
16q6X

q∑
a=1

(a,q)=1

q−2

� X
17
16 2k−k+2ε. (5.6)

Consequently, on combining the estimates (5.5) and (5.6), we arrive at the upper
bound ∫ 1

0

|H(α)| 1732 2k

dα =
∫

M

|H(α)| 1732 2k

dα+
∫

m

|H(α)| 1732 2k

dα

� X
17
16 2k−k+2ε,
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and so the conclusion of the lemma follows immediately.

On recalling the conclusion of Lemma 2.1, and noting that all of the moments
occurring in the statement of Theorem 1(iii) are even, one finds that the upper
bounds provided in Theorem 1(iii) are immediate from Lemmata 5.1, 5.2 and 5.4.
The same is true also for the first three bounds recorded in Theorem 1(ii), but in
this case, for the second two estimates, one combines Lemmata 5.1, 5.2 and 5.4 via
Hölder’s inequality in the respective shapes∫ 1

0

|fΦ(α;P )|8dα�
∫ 1

0

|HΨ(α;X)|8dα

�
(∫ 1

0

|HΨ(α;X)|4dα
)1/5(∫ 1

0

|HΨ(α;X)|9dα
)4/5

,

and ∫ 1

0

|fΦ(α;P )|10dα�
∫ 1

0

|HΨ(α;X)|10dα

�
(∫ 1

0

|HΨ(α;X)|9dα
)7/8(∫ 1

0

|HΨ(α;X)|17dα
)1/8

.

The final estimate of Theorem 1(ii), on the other hand, may be established along
the lines of the proof of Lemma 5.4, now working from the 10th moment∫ 1

0

|fΦ(α;P )|10dα� P 127/8+ε,

together with the minor arc bound

sup
α∈m

|fΦ(α;P )| � P 15/8+ε,

which is immediate from Lemma 5.3.
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